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The proof checker CALCCHECK has been developed for teaching calculational proofs in the
style of Gries and Schneider’s textbook classic “A Logical Approach to Discrete Math”.

This currently very incomplete document will grow into a CALCCHECK manual.

1 Introduction

One student will have seen essentially the situation depicted below in their web browser during an exam
(except for the symbol input menu added for illustration, and the “/co” string associated with that).

Via the “web application” interface CALCCHECKWeb, users are presented with a page consisting of a
sequence of “cells” such as the one displayed above, where the large area to the left is a text input area
that supports Unicode input via a symbol completion mechanism that accepts, in most cases, common
LATEX macro names for symbols at least as one alternative. Users can request proof checking (or just
syntax checking) from the server; this populates the area to the right with feedback, presented as an
annotated version of the parts of the input that could be parsed (or as a parse error message if nothing
could be parsed).
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Some documentation and additional material, including live CALCCHECKWeb notebooks for experimen-
tation, are available at the CALCCHECK home page at http://CalcCheck.McMaster.ca/.

2 General Remarks

Throughout this document, we will present CALCCHECK source in its automatically-generated LATEX
rendering — this rendering is intended to precisely represent the concrete syntax of CALCCHECK source,
as it can be seen on the left side of the screenshot in the introduction, while making it more readable
via font choices that come closer to conventional mathematical presentation. Since proportional fonts
are used, only alignments generated by indentation spacing are preserved; internal spacing is rendered
as hard spaces in LATEX, so that “spaces count”, but no attempt is made to preserve alignment achieved
via spacing after the initial indentation. (This LATEX rendering in particular does not attempt to achieve
traditional mathematical formula layout and spacing.)
CALCCHECK syntax is layout-sensitive; larger-scale structures, including ‘Theorem’, ‘Proof ’, ‘Using’,

etc., typically require all their content to be indented at least two additional spaces. Calculation step
expressions also need to be indented at least two spaces more than the calculation operators, and all
calculation operators of any one calculation need to be aligned in the same column. Theorem statement
expressions and the expressions forming calculation steps need no delimitation beyond that provided
by these layout rules; expressions in other positions are delimited by backticks (` . . .`) following the
conventions of Markdown [Gruber, 2004, Leonard, 2016a].

Markdown conventions also apply in the documentation sections of CALCCHECK notebooks, where the
Pandoc flavour [MacFarlane, 2006, Leonard, 2016b] of Markdown can be used.

While TEX math mode is designed for mathematical formulae mostly containing single-letter and
single-symbol identifiers, CALCCHECK is designed to work well with multi-letter identifiers, and even
multi-symbol identifiers; CALCCHECK therefore demands that most lexemes are separated by spaces.

The sequence “ ” (obtained via the keyboard shortcut /comment) starts a line comment, but this
is not yet accepted in all places.

3 Operator Precedences and Associating Conventions

The expression languages used in CALCCHECK notbooks are mostly user-defined, with very few hard-coded
primitives.

Operators are introduced by declaring a precedence for them, and optionally also an associating
convention, for example:

Precedence 40 for: ∧ , ∨
Associating to the right: ∧ , ∨

The first line above declares the same precedence, namely 40, for the conjunction ∧ and disjunction
∨ operators, following LADM. This decision, which enforces parenthesisation, is justified in LADM by
the desire to avoid confusion. With the precedence declaration above in scope, CALCCHECK produces,
for the input ‘p ∧ q ∨ r ’, the parse error message “Missing parentheses: ∧ does not associate with
∨ ”, prodding users to be explicit whether they wanted to write ‘(p ∧ q) ∨ r ’ or ‘p ∧ (q ∨ r)’.
Without the “Associating” line above, a similar message would be produced for the input ‘p ∧ q ∧ r ’;

due to that “Associating” line, ‘p ∧ q ∧ r ’ is parsed as ‘p ∧ (q ∧ r)’.
Here is the complete table of precedences for the CALCCHECK library used in recent courses; this is only
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slightly modified from that of LADM. We omit the underscores for the argument positions of visible
binary infix operators; note also that the symbol “∶=” used for textual substitution is the single Unicode
codepoint “COLON EQUALS”. Only textual substitution and quantification notation are part of the
hardcoded CALCCHECK expression syntax; everything else in this table is user-defined.

● (∞): [ ∶= ] (textual substitution) (highest precedence)

● 140: unary postfix operators: !
⌣

* + (∣ ∣)
● 130: unary prefix operators: + − ¬ # ∼ P suc

● 120: (function application), @

● 115: **

● 110: ⋅ / ÷ mod gcd

● 105: # M z

● 100: + − ∪ ∩ × ○ ⊕ _ ◁ −◁ ▷ −▷
● 97: ↔ (relation type)

● 95: → (function type)

● 90: ↓ ↑
● 70: #

● 60: ◁ ▷ ⌢
● 50: = ≠ < > ∈ ⊂ ⊆ ⊃ ⊇ ∣ (conjunctional)

● 40: ∨ ∧
● 20: ⇒ /⇒ ⇐ /⇐
● 10: ≡ /≡
● 9: : = (assignment command, two characters)

● 5: ; (command sequencing)

● (−∞): ⍟ ● (quantification notation, for ⍟ ∈ {∀,∃,⋃,⋂,∑,∏, . . .}) (lowest precedence)

All non-associative binary infix operators associate to the left, except ∗∗, ◁,⇒, →, , ×, which associate
to the right.

LADM does permit some combinations of same-precedence operators, in particular ‘a + b − c’. For
dealing with this correctly, the CALCCHECK setup for this row of the precedence table contains operator
combinations that associate ‘with’ each other:

Precedence 100 for:

+ , − , ∩ , ∪ , × , ⊍ , ○ , →▸ , , ⊕ , ⊗ , ⊖ , ⊛
Associating to the right: ∩ , ∪ , × , ⊍ , ○ , , →▸
Associating to the left: + , − , + with − , − with +

The first of these specifies that ‘a+b−c = (a+b)−c’, and the second specifies that ‘a−b+c = (a−b)+c’.

For infix, prefix, and postfix operator symbols, precedences and associating conventions need to be
established before the operators can be declared (given a type). This corresponds to the practice of
LADM, where the precedence table is reproduced on the inside cover, and some symbols are used at
different types in different chapters.

Associative operators still need an associating convention — the following makes it possible to write
‘p ≡ q /≡ r ’ without parentheses although equivalence ≡ and inequivalence /≡ have the same precedence:
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Precedence 10 for: ≡ , /≡
Associating to the right: ≡ , /≡ , ≡ with /≡ , /≡ with ≡

(In fact, it is important to remember that the associating conventions only make a difference for parsing,
by allowing to omit certain parentheses, and have nothing to do with associativity properties.)

However, since CALCCHECK currently does not support matching up to mutual associativity laws,
for reasoning about ‘p ≡ q /≡ r ’ it is relevant to know that it denotes ‘p ≡ (q /≡ r)’, and not
‘(p ≡ q) /≡ r ’.

(All these notational choices could be changed by using different preloaded declarations in CALCCHECK.)

LADM also supports conjunctional operators (see the table of precedences above); these include =
and ⊆ ; this means that “Q = R ⊆ S” is considered as short-hand for the conjunction “Q = R ∧ R ⊆ S”.
CALCCHECK allows also more-than-binary infix operators to be declared as conjunctional; we use this
for “ ”, which is just a user-defined mixfix operator. Conjunctionality then allows us to write
“a R b S c” instead of “a R b ∧ b S c”.

4 Quantification in CALCCHECK

For quantification, CALCCHECK follows the spirit of LADM, but the (currently hard-wired) concrete
syntax is closer to the Z notation [Spivey, 1989]: The general pattern of quantified expressions is:

bigOp varDecls rangePredicate ● body

The shorter form “bigOp varDecls ● body” is an abbreviation where the range predicate defaults to
true. The quantifying “big operators” are user-declared; we are working with the following set-up:

Big operator for + is ∑
Big operator for ⋅ is ∏
Big operator for ∧ is ∀
Big operator for ∨ is ∃
Big operator for ∩ is ⋂
Big operator for ∪ is ⋃

As an example for calculational quantifier reasoning, we show a proof for “Change of dummy via ∼” —
this allows us to “replace quantification over relations with quantification over relation complements”
and is a special case of the LADM theorem “Change of dummy” of which we showed a version in
Kahl [2018]. In the theorem statement expression,

(∀ x R ● P) ≡ (∀ y R[x ∶= ∼ y] ● P[x ∶= ∼ y]) ,

the variables R and P are recognised as metavariables since they occur in scope of variable binders (here,
universal quantification and substitution). In particular, all occurrences of R and P are within scope of
a binder for x , so they may be instantiated with expressions containing x as free variable. However, the
second occurrences of R and P are within scope of a binder for y , while their first occurrences are not
within scope of a binder for y , so CALCCHECK derives what LADM calls a “¬occurs proviso”; this is by
default reported in the feedback, and it is possible to let CALCCHECK also report the allowed occurrences
of bound-variable-metavariables (here, ‘x ’) in expression metavariables:

����±�&DOF&KHFN��0HWDYDULDEOHV��3� �3Ú[�Û��5� �5Ú[�Û����

����±�&DOF&KHFN��3URYLVR��£RFFXUV�C\C��C3��5C�
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Gries [1997] calls proving “theorem schemas” involving such metavariables “schematic proofs of schematic
formulas”, but then proposes to relax terminology and still just talk about “theorems”, which is essen-
tially the approach already adopted by Gries and Schneider [1993] in LADM. CALCCHECK supports this
approach to metavariables, which is quite different from the way most current proof assistants require
formalisations to be done, including for example Agda [Norell, 2007], Coq [Bertot and Castéran, 2004],
Isabelle/HOL [Nipkow et al., 2002], Lean [de Moura et al., 2015], Mizar [Grabowski et al., 2010], or PVS
[Owre et al., 1999]: None of these include metavariables of this kind in their theory languages.

In the hints of the proof of “Change of dummy via ∼”, we list all theorem expressions explicitly upon
first occurrence (for information only; the proof is accepted also without):

Theorem “Change of dummy via ∼ ”∶ (∀ x R ● P) ≡ (∀ y R[x ∶= ∼ y] ● P[x ∶= ∼ y])
Proof:

(∀ y R[x ∶= ∼ y] ● P[x ∶= ∼ y])
≡ ⟨ “One-point rule for ∀ ” `(∀ x x = E ● P) ≡ P[x ∶= E ]` ⟩

(∀ y R[x ∶= ∼ y] ● (∀ x x = ∼ y ● P))
≡ ⟨ “Nesting for ∀ ” `(∀ x R ● (∀ y S ● P)) ≡ (∀ x , y R ∧ S ● P)` ⟩

(∀ y , x R[x ∶= ∼ y] ∧ x = ∼ y ● P)
≡ ⟨ Substitution ⟩

(∀ y , x R[x ∶= z ][z ∶= ∼ y] ∧ x = ∼ y ● P)
≡ ⟨ “Replacement ” (3.84a) `(e = f ) ∧ E [z ∶= e] ≡ (e = f ) ∧ E [z ∶= f ]` ⟩

(∀ y , x R[x ∶= z ][z ∶= x ] ∧ x = ∼ y ● P)
≡ ⟨ Substitution ⟩

(∀ y , x R ∧ x = ∼ y ● P)
≡ ⟨ “Dummy list permutation for ∀ ” `(∀ x , y R ● P) ≡ (∀ y , x R ● P)` ⟩

(∀ x , y R ∧ x = ∼ y ● P)
≡ ⟨ “Nesting for ∀ ” ⟩

(∀ x R ● (∀ y x = ∼ y ● P))
≡ ⟨ “Equality with ∼ ” `Q = ∼ R ≡ R = ∼ Q` ⟩

(∀ x R ● (∀ y y = ∼ x ● P))
≡ ⟨ “One-point rule for ∀ ” ⟩

(∀ x R ● P[y ∶= ∼ x ])
≡ ⟨ Substitution — since ¬occurs(`y`,`P`) ⟩

(∀ x R ● P)

(The last hint here contains an “in-hint comment” introduced by ‘— ’.)
∀-introduction can be seen as constituting one direction of Metatheorem (9.16) of LADM: “P is a

theorem iff (∀x ● P) is a theorem”, with instantiation constituting the other direction. LADM then uses
Metatheorem (9.16) as a proof method corresponding to ∀-introduction; CALCCHECK has a special proof
construction for this: A proof for a universal quantification (∀ x ● P) by ∀-introduction is presented in
CALCCHECK as the heading “For any `x`:” followed by a proof for P , or, using a different variable and
writing “For any `y`:” followed by a proof for P[x ∶= y] (where this substitution does not need to be
written explicitly). In the context of LADM this is justified by metatheorem (9.16): “P is a theorem
iff (∀ x ● P) is a theorem.”

Consider the following theorem:

Theorem (9.21) “Distributivity of ∧ over ∃ ”∶ P ∧ (∃ x R ● Q) ≡ (∃ x R ● P ∧ Q)

In LADM, this comes with the proviso “¬occurs(‘x ’, ‘P ’)” — technically, this is therefore again a meta-
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theorem, with metavariables P , Q , and R standing for expressions and metavariable x standing for a
variable; the proviso means that theoremhood is asserted only for cases where P is instantiated with
an expression in which the instantiation of x does not occur free. As mentioned before the proof of
“Change of dummy via ∼ ”, CALCCHECK derives such provisos automatically from the theorem statement
(and reports them as part of the feed-back); matching fails where such provisos are violated.

The calculation format as such has to be considered as conjunctional, since in particular implication
chains as above are allowed by the “relaxed proof style” in LADM Chapter 4, which does not consider the
implication operator ⇒ as conjunctional. (Demanding that only conjunctional operators could be used
as calculation operators would forbid such implication chains.) Indeed, where LADM introduces the
calculation format in Chapter 1 on p. 15, it translates the calculation into a (meta-level) conjunction
without invoking conjunctionality of the operator “=”. In CALCCHECK, we therefore just define the
calculational presentation to be conjunctional as such, see Sect. 5.4. Therefore, in calculations where
the expressions are of type B, the two operators “≡” and “=” can be used interchangeably as calculation
operators; we prefer to use “≡” since it documents the type B.

The proof of the equivalence of the relation-algebraic and predicate-logical definitions of transitivity
by Schmidt and Ströhlein [1993, p. 28] translates directly into CALCCHECK — we only “saved” two
additional (mutually inverse) applications of De Morgan laws:

Theorem “Transitivity ”∶
is-transitive R ≡ ∀ x ● ∀ y ● ∀ z ● x R y R z ⇒ x R z

Proof:

is-transitive R

≡ ⟨ “Definition of transitivity ” ⟩
R # R ⊆ R

≡ ⟨ “Relation inclusion ”, “Relation composition ” ⟩
∀ x ● ∀ z ● (∃ y ● x R y R z) ⇒ x R z

≡ ⟨ “Witness ” `(∃ x ● P) ⇒ Q ≡ (∀ x ● P ⇒ Q)` ⟩
∀ x ● ∀ z ● ∀ y ● x R y R z ⇒ x R z

≡ ⟨ “Interchange of dummies for ∀ ” ⟩
∀ x ● ∀ y ● ∀ z ● x R y R z ⇒ x R z

In the third hint above, we juxtaposed two theorem references, one by theorem name “Witness”, and
one by theorem expression — this pattern frequently serves documentation in LADM; in CALCCHECK this
is defined as referring to the intersection of the sets of theorems referred to by the individual references
(using only expressions as stand-alone theorem references is by default disabled for pedagogical reasons:
Some students would stop remembering theorem names, and start writing random expressions in hope
to hit on a theorem).

5 Quick Systematic Overview of the CALCCHECK Language

In the diagram below, the main syntactic categories of the CALCCHECK language are indicated — full
arrows denote the “are immediate constituents of” relation, and dotted arrows the “may be immediate
constituents of” relation. A CALCCHECK module currently just consists of a sequence of “top-level items”
(TLIs); CALCCHECK notebooks used for teaching are technically module “suffixes” that may not contain
module import declarations; these and arbitrary other TLIs may be contained in the preloaded “prefix”.
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Top-level items
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Proofs
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Expressions -Substitutions

5.1 CALCCHECK Theory Content: Top-Level Items (TLIs)

The most prominent kind of TLI is introduced by one of the (completely interchangeable) keywords
‘Theorem’, ‘Lemma’, ‘Proposition’, ‘Corollary’, and ‘Fact’, with the following syntax:

Theorem {ThmName ∣ ThmNum}∗∶ expression

Proof: proof

Each theorem can have any number of theorem numbers (in parentheses) or theorem names (in pretty
double quotation marks “. . . ”). The same theorem name or number may also be used in several theorems
— this corresponds to the practice in LADM. Lack of a proof is flagged as an error.

The same syntax as for Theorems is also used for Axioms, except that for an Axiom, presence of a
proof is flagged as an error.

Currently, CALCCHECK (like LADM) is lacking support for formal definition principles (like inductive
datatypes or definition by primitive recursion); new identifiers are introduced using Declarations and
may in addition be provided Explanations; they are then defined using axioms, as in the following
example:

Declaration∶ z ∶ A ↔ B → A ↔ C → B ↔ C

Explanation∶ R z S ∶= “The right-residual of `S` by `R` ”

Explanation∶ R z S ∶= “Left-division of `S` by `R` ”

Explanation∶ R z S ∶= “`R` under `S` ”

Axiom “Characterisation of right residual ” “Characterisation of z”∶ X ⊆ R z S ≡ R # X ⊆ S

Operator declarations such as the ones given above actually need to be preceded by precedence decla-
rations (and possibly declarations specifying association to the left or right) which are then valid for
all operators using the same name — this, too, corresponds to the practice of LADM, which features a
single precedence table on its insider cover.

For relation composition and residuals, we fix the same precedence, but higher than that of intersection
and union, and to avoid potential confusion we declare the residual operators as non-associating, so that
nested applications always require parentheses:

Precedence 105 for: # , M , z

Associating to the right: #
Non-associating: M , z

TLIs of shape

Activate {associativity ∣ symmetry ∣ monotonicity ∣ . . .} property ThmRef
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are used to enable features the soundness of which depends on the respective theorems:

� ‘associativity’ and ‘symmetry’: CALCCHECK applies theorems via rewriting; matching up to as-
sociativity and/or symmetry is anabled by activating these theorems. (This is independent of
parsing, which is determined by the ‘Associating’ det-up described above.

� ‘transitivity’ enables combinations of possibly different calculation operators.

� ‘antisymmetry’ enables ccyclic calculations for proving (conjunctions of) equalities.

� ‘reflexivity’ makes it possible to use equality calculations to prove, e.g., inclusions.

� ‘converse’ properties enaples the use of, for example, laws formulated in terms of ⇒ to prove
goals, in particular calculation steps, formulated in terms of ⇐.

� ‘lower-bound’ and ‘upper-bound’ properties serve to recognise “trivial calculations”, in particular
long calculations establishing goals of shape ‘p⇒ true’.

� ‘monotonicity’ and ‘antitonicity’ set up properties for use with the keyword hint-items ‘Mono-

tonicity’ and ‘Antitonicity’, see below in Sect. 5.3.

A TLI of shape

Register {type ∣ operator} Identifier for built-in BuiltIn

associates user-defined operators with built-in functionality; this provides in particular an interface to
integer and natural-number arithmetic.

Finally, MarkDown TLIs accommodate documentation using Pandoc-flavoured Markdown [MacFar-
lane, 2006].

5.2 Expression Syntax

The expression language of LADM relies to a very large part on mixfix operators, and uses function ap-
plication only sporadically. In CALCCHECK, mixfix operators can be declared with underscores indicating
argument positions; mixfix operators that act as infix, prefix, or postfix operators have to be assigned
a single precedence level and associating convention as explained above.

The only hard-coded special expression syntax is the quantification syntax explained in Sect. 4.
The infix function type constructor → is currently hard-coded. Function application syntax by

juxtaposition ‘f a’ is also hard-coded into the parser, but has to be enabled via a declaration before
it can be used. Therefore, alternate function application syntax can be defined, for example via the
following:

Precedence 120 for: .

Associating to the left∶ .

Declaration∶ . ∶ (A → B) → A → B

This could the either be used exclusively as syntax for function application ‘f . a’, as proposed by Aarts,
Backhouse, et al. (1992), or besides juxtaposition, as in LADM. However, the rule of LADM that ‘.’
is used only for function application to atomic (variable or constant) arguments can currently not be
enforced by CALCCHECK. (The CALCCHECK-based courses so far use only juxtaposition for function appli-
cation, since this is the convention used by most modern theorem provers and functional programming
languages.)
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5.3 Hint Items

The hints in calculations are sequences of hint items separated by comma or the keyword ‘and’; in nested
hints, ‘and’ has lower precedence than ‘with’, and comma has higher precedence. We have already seen
most kinds of hints; for a quick summary, hint items can have the following shapes:

1. ThmRef ∶∶= {ThmNum ∣ ThmName ∣ `expr`}+

A non-empty sequence of theorem names or theorem numbers (and, but not only, backticked
expressions), denoting the intersection of their theorems.

2. `var1, . . . , varn ∶= expr1, . . . , exprn`

Explicit substitution of theorem variables can be specified only after ‘with’, typically preceded by
a single theorem reference:

ThmRef with `x1, . . . , xn ∶= e1, . . . , en`

Instead of the (typically single) theorem referred to by ThmRef , the result of applying the listed
substitution to that theorem is used.

3. Assumption `expr` or Assumption ThmRef

These refer to antecedents separated from the proof by ‘Assuming’, see below.

4. Local property `expr` or Local property ThmRef

These refer to properties shown in a ‘Side proof ’, see below.

5. Definition of `identifier`

These refer to names defined in a ‘Local definition:’, see below.

6. Substitution

This keyword hint item performs substitutions E [z ∶= F ], that is, it rewrites, for example,
(R # S)[R ∶= P ∩ Q] to ((P ∩ Q) # S). The substitution mechanism is aware of metavariables
and of ¬occurs provisos.

7. Evaluation

This evaluates ground (sub-)terms consisting only of number literals and operators Registered
for built-in operations.

8. Fact `expr`

This justifies expr iff it is a ground Boolean expression that the ‘Evaluation’ mechanism can evaluate
to true.

The ‘Evaluation’ and ‘Fact’ hint items can be enabled and disabled separately for CALCCHECKWeb

notebooks.
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9. hi0 with hi1 and . . . and hin

The theorem(s) referred to by hi0 can be rewritten by equations extracted from hi1, . . . , hin ,
or these can be used to discharge antecedents in an application of a hi0 theorem via conditional
rewriting. Since these two mechanisms overlap, there are cases where ‘hi1 with hi2’ works just as
well as ‘hi2 with hi1’, and then it is up to the proof author to chose which way “reads” better in
their opinion. But in general, neither mechanism is symmetric, in particular since only rewriting
with one-directional matching is used in both mechanisms, but no narrowing, and no unification.

If hi1, . . . , hin contain a substitution (as described under 2. above), then the theorem referred to
by hi0 is instantiated via that substitution first.

When a non-empty suffix of the argument hint-item list consists only of assumptions, then instead
of ‘assumption `E1` and assumption `E2`’ one may simply write ‘assumptions `E1` and `E2`’,
only with ‘and’ (and analogously for ‘local properties’).

10. Monotonicity, Antitonicity

These can only occur before ‘with’ and invoke non-empty sequences of activated monotonicity
rules; ‘Monotonicity’ will also work where (in addition) even numbers of activated antitonicity
rules are used, and ‘Antitonicity’ with odd numbers of antitonicity rules.

11. Induction hypothesis {`expr`}?

This is useful in the ‘Induction step’ part of By induction’ proofs only, and refers to the as-
sumption available for the induction step — this is normally the goal expression of the induction
proof.

In nested induction steps, supplying the precise induction hypothesis used via `expr` is by default
required, but this requirement can be disabled.

12. SubProof{ for `expr`}?:
proof

Such subproof hint items start their own layout blocks. The goal can be omitted if CALCCHECK

can infer it from the proof, see Sect. 5.4.

Such subproof hint items also occur directly as constituents in the Using and With proof constructs,
see Sect. 5.4.

5.4 Proofs

While we explain the different proof structures available in CALCCHECK, we also provide information
about where and how proof goals may be inferred.

1. Calculations as proofs do not need to be introduced by any keyword.

The calculational presentation as such is conjunctional, so that, no matter what the precedences
and associating conventions for the involved operators are, a calculation of shape
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E1

⟜p ⟨ Hint1 ⟩
E2

= ⟨ Hint1 ⟩
E3

r⊸ ⟨ Hint1 ⟩
E4

always denotes a conjunction chain:

(E1 ⟜p E2) ∧ (E2 = E3) ∧ (E3 r⊸ E4)

To have this calculation accepted as proof for ‘E1 � E4’ requires the previous activation of a
transitivity law ‘(x ○Ð● y) ⇒ (y ●Ð○ z) ⇒ (x � z)’ together with registration of ‘=’ as built-in
equality (or appropriate additional transitivity laws).

If, via such transitivity, a calculation proves one of ‘P ≡ true’, ‘P ⇐ true’, ‘true ≡ P ’, or
‘true ⇒ P ’, then the inferred proof goal is P . Otherwise, if via transitivity the calculation proves
P � Q , then that is the inferred proof goal.

Either the first or last expression of a calculation may be followed by the key phrase ‘— This is’
(consisting of an em-dash and the two words “This” and “is” separated by exactly single spaces)
followed by a reference to a theorem, assumption, or local property; those cases are treated the
same for inferring proof goals as replacing the corresponding calculation end with true.

As a special case of such a reference, ‘an assumption’ or ‘a local property’ may be used; this avoids
duplication, since in these cases the relevant assumption or local property has already been stated
before the ‘— This is’.

2. By Hint

This kind of proof discharges simple proof obligations and is typically used with a small number
of small hint items.

CALCCHECK cannot infer proof goals here.

3. For any `var{ ∶ type}?`∶

This header introduces the bound variable var ; if the subproof following this header proves P , then the
resulting proof establishes (∀ var ∶ type ● P), so that this structure corresponds to ∀-introduction. The
type is optional, and the variable can even be renamed, since CALCCHECK compares expressions internally
only up to α-equivalence.

This proof shape represents use of ∀-introduction; if the contained proof has inferred proof goal P , then
the resulting proof has inferred proof goal (∀ var ∶ type ● P).

An additional range predicate can be provided:

For any `var{ ∶ type}?` satisfying `expr`∶

With this header, if the contained proof has inferred proof goal P , then the resulting proof has inferred
proof goal (∀ var ∶ type expr ● P).
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4. Assuming ThmId? `expression` ∶

While LADM uses the keyword ‘Assume’ for the proof methof of “assuming the antecedent” (which corre-
sponds to implication introduction), we chose the less imperative ‘Assuming’.

Assumptions can be referred to in hint items by the keyword ‘Assumption’ followed by the full assumed
expression, or by any theorem identifier provided after ‘Assuming’.

With the proof header “Assuming `P`:”, if the contained proof has inferred proof goal Q , then the whole
proof has inferred proof goal ‘P ⇒ Q ’.

Multiple assumptions (separated by commas) can be used for goals of shape ‘P1 ∧ . . . ∧Pn ⇒ Q ’, too,
but the inferred proof goal will always be ‘P1 ⇒ . . . ⇒Pn ⇒ Q ’.

5. Assuming ThmName? `expression` and using with hint ∶

This variant of ‘Assuming’ has the same inferred proof goal as plain ‘Assuming’.

The difference is that each reference to this ‘Assumption’ acts as if it had been modified by adding
‘with hint ’ after it.

6. Assuming witness `var{ ∶ type}?` satisfying `expr` ∶

This header introduces the bound variable ‘var‘, and makes expr available as assumption to the following
subproof.

If the contained proof has inferred proof goal P , then the resulting proof has inferred proof goal (∃ var ∶
type ● expr)⇒P .

The variant

Assuming witness `var{∶ type}?` satisfying `expr` by hint ∶

can be understood as providing ∃-elimination; it uses hint to discharge the antecedent (∃ var ∶ type ● expr)
and then has inferred proof goal P .

7. Using HintItem0 ∶
subproof1
⋮
subproofn

This proof header is followed by a sequence of subproofs hint items, as listed in Sect. 5.3.

In most cases, this can be understood as turning a theorem referenced by HintItem0 into an inference rule
with n premises, and applying it to the n subproofs.

Technically, it corresponds to a proof ‘By’ the following hint item:

HintItem0 with subproof1 and . . . and subproofn

Therefore, CALCCHECK cannot infer proof goals here.

If only one subproof is given, and the goal of this can be inferred, then the “Subproof” header does not
have to be provided.

8. With Hint ∶
subproof1
⋮
subproofn

12
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As for ‘Using’, this proof header is followed by a sequence of subproofs, but the header may contain more
than one hint item. If Hint is ‘hi1, . . . , him , then the resulting proof corresponds to a proof ‘By’ the
following hint:

hi1 . . . , him , subproof1 . . . , subproofn

That is, where ‘Using’ has a ‘with’, here we have another ‘and’. This is essentially just syntactic sugar with
better layout support than just ‘By’ with subproofs.

Therefore, CALCCHECK cannot infer proof goals here.

9. Side proof for ThmId? `expr`∶
⋮

Continuing:
proof

This introduces expr as a local property, for which the proof must be provided in an indented block before
‘Continuing:’ with the goal of the whole proof (in another indented block). Local properties, which
may refer to local variables introduced by ‘For any’, and which may use assumptions in their proofs, are
then referred to either in later side proofs or after ‘Continuing:’ in hint items by the key phrase ‘Local
property” followed by their expression or name. (Before ‘Continuing:’, there can be multiple side proofs
at the same indentation.)

The inferred proof goal here is the same as that of the proof after ‘Continuing:’.

10. Local definition: identifier = expr
⋮

Continuing:
proof

This introduces identifier as a local constant, the definition of which can be referred to via the hint item
‘Definition of identifier ’.

Before ‘Continuing:’, there can actually be and sequence of side proofs and local definitions at the same
indentation.

The inferred proof goal here is the same as that of the proof after ‘Continuing:’.

11. calculation
Proof for this:

proof

This shape requires that all of calculation is indented at least two spaces more than ‘Proof for this:’.

Assuming that calculation ends in the expression calcend , this shape of proof is equivalent to continuing
calculation with one more step:

calculation
≡⟨ Subproof for `calcend` ∶

proof
⟩
true

The inferred proof goal for this kind of proofs is the first expression of calculation, which cannot have any
‘— This is’.

13
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12. By cases: `expr1`, . . . , `exprn`
Completeness: proof
Case `expr1`:

proof1
⋮
Case `exprn`:

proofn

This introduces case analysis essentially as proposed in LADM chapter 4, except that the completeness
proof for ‘expr1 ∨ ⋯ ∨ exprn ’ is mandatory. (We do not use this proof structure in the current paper.)

‘Assumption `expri`’ is available for use in the case proofi .

The inferred proof goal for such case analysis proofs is the inferred goal of the first case proof that has
one.

13. By induction on `var ∶ type`∶
Base case {`expr`}?:

proof1
Induction step {`expr`}?:

proof2

Although induction proofs could be presented ‘Using’ induction principles, we also have this simpler
structure to be able to introduce induction proofs very early, before quantification. CALCCHECK currently
supports ‘By induction’ proofs via simple induction for natural numbers and for sequences (requiring
registration of the respective constructors in either case).

Currently CALCCHECK does not attempt to infer proof goals from induction proofs.

These proof structures are actually sufficient to support and encourage fully formal proofs. (In [Kahl, 2018]
we show several examples of elegant fully formal proofs where LADM resorts to prose for significant
parts of the proof structure, even in cases where it would be possible to use proof syntax introduced in
LADM chapter 4, such as ‘Assuming’ or ‘By cases’.)
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G. Schmidt and T. Ströhlein. Relations and Graphs, Discrete Mathematics for Computer Scientists.
EATCS-Monographs on Theoret. Comput. Sci. Springer, 1993. ISBN 3-540-56254-0, 0-387-56254-0.
doi: 10.1007/978-3-642-77968-8.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International Series in Computer
Science. Prentice Hall, 1989.

15

https://daringfireball.net/projects/markdown/
http://johnmacfarlane.net/pandoc/
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://pvs.csl.sri.com/

	Introduction
	General Remarks
	Operator Precedences and Associating Conventions
	Quantification in CALCCHECK
	Quick Systematic Overview of the CALCCHECK Language
	CALCCHECK Theory Content: Top-Level Items (TLIs)
	Expression Syntax
	Hint Items
	Proofs


